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Figure 1: Gaussian kernel density estimation for a single impulse value (m = 512 bins, σ = 0.2). Iterated uniform (“box”) filters [8,26]
(red & dashed) underestimate the mode and overestimate the sides of the distribution. Deriche’s [4,5] linear-time recursive filter
approximation (blue) produces a pixel-perfect match to the true distribution (grey).

ABSTRACT

Kernel density estimation (KDE) models a discrete sample of data
as a continuous distribution, supporting the construction of visualiza-
tions such as violin plots, heatmaps, and contour plots. This paper
draws on the statistics and image processing literature to survey
efficient and scalable density estimation techniques for the common
case of Gaussian kernel functions. We evaluate the accuracy and
running time of these methods across multiple visualization con-
texts and find that the combination of linear binning and a recursive
filter approximation by Deriche efficiently produces pixel-perfect
estimates across a compelling range of kernel bandwidths.

1 INTRODUCTION

Kernel density estimation (KDE) [14, 17] estimates a continuous
probability density function for a finite sample of data. KDE is
regularly used to visualize univariate distributions for exploratory
analysis in the form of area charts or violin plots [3, 9], providing
valuable alternatives to histograms. In two dimensions, KDE esti-
mates produce smoothed heatmaps that can be visualized directly as
images or used to extract density isolines [13] for contour plots.

To form a density estimate, each data point is modeled as a prob-
ability distribution, or kernel, centered at that point. The kernel
is parameterized by a bandwidth σ that determines the width (or
spread) of each point distribution. The sum of these kernels consti-
tutes the density estimate for the sample. While a variety of kernel
functions exist, the normal (Gaussian) distribution is a common
choice [20], in which case the bandwidth σ is its standard deviation.

We would like density estimation to be fast: scalable to large
datasets, yet amenable to interactive bandwidth adjustment. A naı̈ve
calculation has quadratic O(m ∗ n) complexity: we must sum the
contributions of n data points at each of m locations at which we mea-
sure the density. While approximation methods exist, we want them
to be accurate, as inaccurate estimates can result in visualizations
with missing features or false local extrema (peaks or valleys).

This paper reviews scalable, linear-time approximations of Gaus-
sian kernel densities that smooth a binned grid of values. We evaluate
a set of methods – box filters [25], extended box filters [8], and De-
riche’s approximation [4, 5] – in the context of 1D area charts and
2D heatmaps. We find that the combination of linear binning (pro-
portionally dividing the weight of a point among adjacent bins) and
Deriche’s approximation is both fast and highly accurate, outper-
forming methods currently used in existing visualization tools and
often providing pixel-perfect results.
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2 DENSITY ESTIMATION METHODS

Given a dataset with n data points xi ∈ ℜ, a kernel function K, and
bandwidth σ , the univariate kernel density estimate is defined as:

f (x) =
1

nσ

n

∑
i=1

K
(x− xi

σ

)
(1)

We focus on the case where K is the normal (Gaussian) density
K(x) = 1√

2π
e−x2/2. We can directly calculate the density at a point x

by summing the kernel response for each data point. If we query the
density at m measurement points, this approach has computational
complexity O(m∗n), which for large datasets can be untenable.

Nevertheless, direct calculation is used by multiple tools. At
the time of writing, Vega and Vega-Lite [18, 19] use direct calcu-
lation for one-dimensional KDE, where m is the number of points
queried in order to draw the density. Line segments then connect
these measured values. The kde2d function of R’s MASS [24]
package (invoked by the popular ggplot2 [27] library for 2D den-
sity estimates) also uses a direct calculation approach, limiting the
feasible number of measurement points for plotting. One can opti-
mize direct calculation by leveraging spatial indices (e.g., KD trees
or Ball trees) to approximate the contribution of suitably distant
points [7], as done in the Python scikit-learn library [15]. However,
the asymptotic complexity remains a superlinear function of n.

To speed estimation, statisticians proposed binned KDE methods
[21] that first aggregate input data into a uniform grid with m bins.
KDE then reduces to the signal processing task of smoothing the
binned data. For example, one can directly convolve the binned
values with a discrete Gaussian kernel (or filter). The resulting
complexity O(n+m∗w) is dependent not just on the number of bins
m, but also the filter width w. Larger bandwidths can result in filter
widths on the same order as m, for a quadratic running time.

Silverman [23] instead applies the Fast Fourier Transform (FFT),
an approach used by R’s density routine. A strength of this method
is that it can support arbitrary kernel functions: the binned data and
a discretized kernel response are separately mapped to the frequency
domain using the FFT, the results are multiplied element-wise (con-
volution in the frequency domain), and an inverse FFT then produces
the density estimate. The complexity is O(n+m logm), with binning
of n points followed by FFT calls on m-sized grids.

For even faster estimates, linear-time O(n+m) approximations
exist. These are particularly attractive for 2D density estimation,
which can be computed using a series of 1D convolutions along every
row and every column of a binned 2D grid. One can approximate
1D Gaussian convolution by iteratively applying a filter of uniform
weight, also known as a box filter. Wells [26] applies this method
to density estimation, contributing a formula for the filter length w
(or equivalently, its radius r) as a function of both σ and the number
of filter iterations k. An attractive property of this approach is its
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Figure 2: 1D estimation error for a single impulse. Error (plotted on a log scale) is measured as the maximum pixel error given a 100-pixel
plot height. Box filters exhibit an oscillating pattern due to bandwidth quantization; the extended box method smooths these artifacts. Deriche
approximation consistently produces lower error, typically with sub-pixel accuracy. Linear binning further reduces the error rate.
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Figure 3: 1D estimation error for Gentoo penguin body mass. Error (plotted on a log scale) is measured as the maximum pixel error given a
100-pixel plot height. Dashed gray lines indicate the normal reference density (NRD) heuristic for automatic bandwidth (σ ) selection [20]. The
combination of linear binning and Deriche approximation consistently produces the most accurate estimates.

simplicity of calculation: k iterations of uniform filtering (running
sums), followed by a scale adjustment. Both d3-contour [1] and Vega
use per-row and per-column box filters for 2D density estimation.

Box filtering runs in linear-time, but has important nuances. First,
the bandwidth σ (a continuous value) is discretized to a filter with
integer radius r, leading to quantization error. To address this issue,
Gwosdek et al. [8] propose an extended box filter that introduces
some non-uniformity by adding fractional weight to the endpoints of
the filter. Second, the true grid size is no longer a constant parameter
such as m = 512 bins. As iterated filters ‘blur’ weight into adjacent
bins, the grid must be extended on both ends by an offset of k∗r. The
running time scales as n+ l, where l = m+2k∗r. As the filter radius
r is a monotone function of σ [26], this can result in larger grids –
and thus higher time and memory costs – for larger bandwidths.

Finally, we consider an approximation developed by Deriche
[4, 5] for computer vision applications. Deriche models the right
half of the standard Gaussian using an order-K approximation:

hK(x) =
1√

2πσ2

K

∑
k=1

αke−xλk/σ (2)

From this formulation, Deriche constructs a recursive filter that
proceeds linearly from the first value to the last. The left half of the
Gaussian is defined by reversing the equation and subtracting the
sample at x = 0 (so that it is not included twice) to form a second
filter. We use a fourth-order approximation (K = 4), with coefficients

α1 = 0.84+ i1.8675, α3 =−0.34015− i0.1299
λ1 = 1.783+ i0.6318, λ3 = 1.723+ i1.997

and α2k = α∗
2k−1, λ2k = λ ∗

2k−1, where x∗ denotes the complex conju-
gate. Deriche determined the αk and λk parameters using numerical
optimization to find the ℓ2-best fit to the Gaussian over the domain

n = 0, . . . ,1000 with σ = 100. Getreuer [6] describes how to alge-
braically rearrange the terms of these filters into direct summations.

After a constant time initialization to compute summation terms
for a chosen σ , the algorithm requires a linear pass over the m bins
for each filter, plus a final pass to sum their results. To handle bound-
ary values, the algorithm must in general perform iterative initializa-
tion per filter, requiring at most another linear pass. Fortunately, this
initialization reduces to a constant time operation for zero-padded
data (i.e., where no weight resides outside the bins).1 Deriche’s
method has complexity O(n+m); it involves more arithmetic op-
erations per step than box filters, but does not require padding the
binned grid. As we will see, it is also much more accurate. To
the best of our knowledge, this work is the first to apply Deriche’s
approximation to the task of kernel density estimation.

While other methods for approximating Gaussian convolution
have been proposed, they exhibit higher error rates and/or longer
running times than those above. For more details, see Getreuer’s
survey and evaluation in the context of image filtering [6].

3 BINNING SCHEMES

For binned KDE approaches one must choose how to bin input
data into a uniform grid. By default we assume the weight of a
data point is 1; however, a binned grid can easily accommodate
variably-weighted points. Simple binning, commonly performed
for histograms, places all the weight for a data point into the single
bin interval that contains the point. Linear binning [11, 25] is
an alternative that proportionally distributes the weight of a point
between adjacent bins. If a data point xi lies between bins with

1In contrast to zero-padded data, one must perform iterations for re-
flected signals (used in image processing to blur without decreasing image
brightness) or periodic domains (where the final bin wraps back to the first).



midpoints b0 and b1, linear binning assigns weight proportional
to (b1 − xi)/(b1 − b0) to bin b0 and (xi − b0)/(b1 − b0) to bin b1.
For example when a point lies at the exact center of a bin, that bin
receives all the weight. If a point resides near the boundary of two
bins, its weight is split nearly evenly between them. We examine
both binning approaches in our evaluation below.

4 EVALUATION

How well do the above estimation methods perform in practice?
Getreuer [6] evaluates a suite of Gaussian filtering methods in the
context of image processing (e.g., blurring), inspiring the choice
of methods we evaluate here. That survey does not address the
question of binning method (images are already discretized into
pixels) and assumes reflected signals outside the image boundaries
(for filters that preserve overall image brightness). Bullmann et
al. [2] examine approximate KDE methods for sensor fusion appli-
cations. They do not evaluate visualization directly, and only assess
box filter approaches, omitting alternative methods such as Deriche
approximation.

We evaluate KDE methods in a visualization context, assessing
box filters, extended box filters, and Deriche approximation. For
the box filter methods, we use k = 3 iterations of filtering. Using 4
or 5 iterations trades-off longer running times for higher accuracy,
but the results remain qualitatively similar. For the Deriche method,
we use a 4th-order recursive filter approximation [6]. Datasets and
benchmark scripts are included as supplemental material.

4.1 Method
We compare the speed and accuracy of KDE methods for both
univariate and bivariate visualizations. To measure accuracy, we
compare against a direct calculation approach. As pixel-based visu-
alizations are inherently discrete, we compute ‘ground truth’ density
estimates at the per-pixel level. We treat each pixel as a bin and
calculate the probability mass it contains, which is the difference in
the KDE cumulative distribution function between the ending and
starting bin boundaries. We then compare these values to estimates
from approximation methods. For the approximate methods, we
linearly interpolate results across the m bins to produce pixel-level
estimates; this matches the standard plotting method of connecting
density measurement points with line segments.

To evaluate accuracy in a visualization context, we consider how
density plots are presented. It is common to use a linear scale with a
domain that ranges from zero to the maximum density. To mirror
this, prior to comparison we separately scale the density estimates,
dividing each by its maximum value. We then multiply by a factor
of 100, so that estimates lie on a [0, 100] scale. This provides
an interpretable measure of error: discrepancies between methods
correspond to the number of pixels difference in a 100 pixel-tall
chart (a reasonable size for showing distributions, including violin
plots), and simultaneously conveys a percentage difference.

We report the maximum (L∞) error, indicating the most ‘glaring’
mistake a method makes; root-mean-square error gives qualitatively
similar results. For 1D estimation we compare to ground truth
estimates for a 1024 pixel wide chart. For 2D estimation we compare
to ground truth for a 512 × 512 heatmap. Both were chosen to align
with common resolutions and computation constraints.

Automatic bandwidth selection for kernel density estimation has
received a great deal of attention [20, 22]. To contextualize our
results, we use Scott’s normal reference density (NRD) rule [20],
a common default intended to minimize the asymptotic mean inte-
grated squared error (MISE) relative to a normal distribution.

Each method was implemented as a single-threaded routine in
JavaScript for web-based visualization. Benchmarks were run in
Node.js v15.12.0 on a 2017 MacBook Pro with a 2.9 GHz Intel
Core i7 processor. We used the performance.now method of the
perf hooks package to measure running times over repeated runs.
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Figure 4: KDE of Gentoo penguin body mass (m = 512 bins, σ = 50).
Box filters tend to underestimate peaks and overestimate valleys, in
some cases ‘eroding’ local peaks (e.g., around 4.9k & 5.7k grams).
Deriche approximation instead produces a pixel-perfect result.
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Figure 5: Running time of 1D estimation on resampled penguin data
(m = 512 bins). As n increases, the running time of the approximation
methods is dominated by the O(n) binning cost.

4.2 Results: 1D Estimation
We first evaluate the KDE methods relative to an impulse: we lo-
cate a single point at x = 0 and perform estimation over the domain
[−1,1]. The result should be a Gaussian distribution with mean 0
and standard deviation matching the kernel bandwidth σ . Figure 1
shows the result for σ = 0.2 and m = 512 bins (sans re-scaling). The
box filter methods produce perceptible errors, whereas Deriche ap-
proximation provides a pixel-perfect match to the actual distribution.

Figure 2 presents scaled comparisons by binning scheme, bin
count, and bandwidth. Standard box filters produce oscillating errors
due to bandwidth quantization. The extended box method smooths
these artifacts. Deriche approximation consistently produces the
lowest error, and notably improves with the use of linear binning.

We next examine real-world measurements from the Palmer Pen-
guins dataset [10]. We estimate densities for penguin body mass
(in grams) for n = 123 Gentoo penguins on the domain [0,7000].
Figure 3 shows maximum estimation errors. We again see that the
combination of Deriche approximation and linear binning produces
the best results, often with sub-pixel error. Figure 4 shows a subset
of the visualized density. The box filter methods again produce
perceptible deviations, which in multiple instances obscure local
extrema. Deriche approximation produces a pixel-perfect result.

To assess scalability, we generate datasets of arbitrary size based
on the Gentoo penguins data. We first fit a kernel density estimate us-
ing direct calculation (σ = 200, based on the NRD value of 204.11),
then sample from the resulting distribution to generate datasets rang-
ing from n = 100 to n = 10M points. Each timing measurement is
taken for m = 512 bins and averages runs for five bandwidths (100,
150, 200, 250, 300) centered near the original NRD value. Figure 5
plots the results. For small n, box filtering is slightly faster as it in-
volves fewer arithmetic operations. As n increases, the O(n) binning
calculation dominates and all methods exhibit similar performance.

4.3 Results: 2D Estimation
To assess bivariate estimates, we use the classic cars dataset [16] and
examine the relationship between mileage and horsepower. We use
the same error measure. Figure 6 presents the error across binning
and bandwidth choices (the same bandwidth is used for the x- and y-
dimensions), with similar patterns as before. Deriche approximation
with linear binning at m = 512 bins produces notably low error rates.



256
bins

512
bins

0.01

0.1

1

10

100

M
ax Error

0.01

0.1

1

10

100

M
ax Error

Simple Binning Linear Binning

0.00 0.04 0.08 0.12 0.16 0.20
Bandwidth

0.00 0.04 0.08 0.12 0.16 0.20
Bandwidth

Box
ExtBox
Deriche

Method

Figure 6: 2D estimation error for car data. Error (on a log scale) is measured as the maximum pixel error given a 100-pixel plot height. Dashed
gray lines indicate the NRD σ value. With 512 bins and linear binning, the Deriche method results in sub-pixel accuracy at all sampled bandwidths.
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Figure 7: Running time of 2D estimation on car data, by bandwidth.
At low bandwidths, Deriche’s method is slightly slower due to more
arithmetic operations. As the bandwidth increases, the box filters
require larger grids, leading to longer running times.

Figure 8 shows heatmaps and contour plots for 2D density estima-
tion, both as separate plots and as contours overlaid on a ground truth
heatmap. We set σ = 0.04 for both the x- and y-dimensions, near the
NRD estimates (0.049, 0.048) for each variable. The same contour
thresholds – [0.01,0.08] with increments of 0.01 – are applied for
each method. Comparison of the contour plots reveals hallucina-
tors [12], where approximation methods produce different visual
features for the same underlying data. The Deriche method provides
a pixel-perfect match to the true density, but the box filter methods
result in different extrema as well as distorted contour shapes.

As shown earlier (Figure 5), for large datasets the running time
of binned KDE methods is dominated by the O(n) binning. Here
we instead assess the effect of bandwidth on 2D estimation time,
shown in Figure 7. At low bandwidths, standard box filtering is
fastest due to fewer operations per bin. However, both box filter
methods become slower at larger bandwidths due to the need to
enlarge the underlying grid. This overhead is exacerbated for 2D
estimation, as the number of expanded cells multiply across grid
rows and columns. In contrast the Deriche method is stable across
bandwidths as it does not require grid extensions, with performance
matching or exceeding the other methods for bandwidths at or above
the NRD bandwidth suggestion.

5 CONCLUSION

We survey approaches for KDE, finding that a combination of lin-
ear binning and Deriche approximation results in fast, linear-time
performance and excellent accuracy at all but the smallest band-
widths. Though limited to Gaussian kernels only, this approach
provides fast and accurate KDE for the tested univariate and bivari-
ate visualizations. Our implementation and benchmarks, includ-
ing additional error metrics, are available as open source software
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Figure 8: Heatmaps and contour plots of car data (miles per gallon
vs. horsepower). Top: plots per density method. Bottom: contour
lines per method overlaid for comparison. Deriche’s approximation
matches the precise density estimate. Box filters result in extra or
missing contour lines and distorted shapes.

(https://github.com/uwdata/fast-kde) and we intend to in-
tegrate this method into existing web-based visualization libraries.
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